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two sensor elements,

I. Iitroduction

Various optimum and sub-optimum filters have béen added to the
bagic generlized cross-correlator in order to enhance its detection and
estimation capabilities in the present of noise. An experimental compar-
ision of the optimum and sub~optimum filtera was discussed in Hassab and
Boucher{1] .For the random signals, the optimum window WII(w) which they

derived has the results of time-delay estimation considerably.

Basically, the solution consists of cross-correlatin.; the
sensor outputs. The time argument that corresponds tco the maximum peak
in the output is the time delay(¥ig. 1). In this report, time delsy
estimation under several assumptions about signals is obtained by averaging
the periodgrams of the data segment4¥lwhen the signal is unknown, the
maximum entropy power spectrum estimation of Burg's algorithm is used to
egtimate the signal power spectrum from the measurement of separated
sensors. The Aknike FPE( Final power error)criterion is also concerned in

deoiding the order of AR model s&nd signal & noise power spectrum estimation
of Burg's algorithm,

II, Theory

Let the sernsor output be the form
Zq(t)=y(t)+n1(t)
(1)
2.5 t):a.y(t-T)+n2( t)

where the signal y(t) and noises n1(t),n2(t)are uncorrelated and jointly

stationary zero mean Gaussinan random processes: over an observation interval

T >>T, Here Tis the difference in arrival time or the time delay between the

In the gorrelator, the multiplier output is given by(2]

Zq.(w)ze(w)'= a ¢y(w) oV ¢n1n2(W)4¢§w) () /e

where - "
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or

where

b (=l | Cb o (wen, () N ()
N nin? 1 2
g (w)=¥* GO (w)+a¥ (w)e™ T, *(w)

The lower case ¢ refers to a single realization of the function and the upper
case indicates its expected value over the ensemble, i.e.<¢y(w))=< ‘Y'(w),2>= §y(w’).
The window WII(w) derived by Hassab and Boucher[:gj is based on the optimal
detection criterion of maximizing the ratio of mean correlator outpnt due to

signal and noise present. The window function can be expressed in the simple

form as
3w

) ) (2a)

WII(W)z

Ey(w)

‘(E‘m(W)Eha(W) + Ey(w){f@ha(w)ma gm(w)]-t- aaﬁy(w)

With a finite number of samples, one spectral density estimate is the

or WII(w)= (3b)

periodogram. A good spectral estimate is obtained by averagings several

periodogram from segments, denoted as M, that provides the best spectral
density estimate and the time- delay estimate.

For deterministic signals,the resulting optimum filters are in
terms of signal and noise spectral densities.

WI(W)= &y(W) (ua)
08,00+ § 0@ (+ag ()

_ij(W)

§Z1(w)§zz(w)-32ﬂ§;(w) the)

the difference between W.. and W

I 17 ie due to the variance aaﬁ&ﬁ of the signal

which is negligible for small a and/or low signal-to-noise spectra,

wI(w)=

oo dmare
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Ctherwise, both filters are similar where the firat term witkin bracketé

in the denominator is due to ¢n1nP(W) and the gecond term ¢C(w). Hagmab and

Boucher{4 ]} have examined the behavior of every window in the presence of a strong

spectral peak in ¢y(w). With a no noise case W;(w) is undefined and W ,(w) is

reduced to 1 . ; .
) The expected generlized correlator output becomes

z1(w)z2(w>= a&&(w)e—jwr"

N . -
divided by Q&(w)(since the window WIi(wO="--~----) then , we get the term of e jwz;
: (w)

the time delay estimation. Hence in this case’we use WII(w) to process the signal

of sinusdid ...

In the cnse of signal unknown Burg's method is used to estimate the Qy(w),

§z1(w) and §z2(w).

MAXIMUM ENTROPY SPECTRUM ESTIMATION: Burg's Algorithm

The maximum entropy method(MEM) using the Burg's algorithm was applied by
Ulryoh(ﬁ],who showed the remarable resolution properties of this approach. In
applying the consept of maximum entropy to spectral analysis [6] we begin with the
relationship between the entropy(strictly speaking, the entropy rate for an infinite

proaess) and the apeetrnl density S(f) of a stationary Gaussian process,

] L
He —w—r log S(£)dg. . . (5)
b 7.
N fN

where fN is the Nyquist frequencgy.

Rewritting (5) in terms of the autocorrelation ka) of the process givea

f
N
H:..L.-j 1og[§ $(k)exp(-23 1 fka t}df (6
bty 7 -1y -

whereA t is the uniform sampling rate. Maximizing (6) with respect to the unknown
¢(k) with the cunstraint that S(f) must slso be eonsistent with the known auto-

correlations ¢(0),8(1),.csey¢(in-1) results in the MEM aspectral estimate.
This estimate expresses maximum uncertainty with respect to the unknown

information but is: consistent with the known information. The variational procedure

=y
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The estimate expresses maximum uncertainty with respect to the unknown information

but 1& consistent with the known information. The variational procedure leads to the ¢ .

expresaion for the MEM speatral density[6],£’7], which for a renl linenr process x(t)

is
Py 1

P, (f)= ~ ' (7)
J M-\ >
£y |1+ _z\ri exp(-;jEﬂfiAt)l

where PM is a gonstant and ry Are prediction error coefficients that are determined

from the data.

The ahief shortcoming of the MEM apeatral estimales has been the lack of a
quantitative method of determing the length of the prediction error filter r(t)

in (7). Recent work of AR processes appears to overcome this problem.

The algorithm of Burg's method is considered a wide-sense stationary Gaussian
process x(t) of zero mean and duration T seconds. The detail of this algorithm is in

reference [A}'

I1I. Experimental Study

(A) 8ignal known:

The'!random signal is generated by passing white noise through a recursive
filter with the impulse response Bnexp(-Bn). The Gaussian white noise at the ou’puts
of two sensors are independent and have been generated by Monte Carlo's method. An
implementation of the generlized correlator is exvcuted for each set of 128 data
points obtained from the sensor outputs. The time delay between the sensor elements
is arbitrary and is selected as 16 & 10 units with different case. Here to aompare
the time delay results from different signal-to-noise ratios and to determine the

optimum M.

When the signsl y(t) is random with known statistics plus the Gaussian
noise with zero mean and variance , the signal-to-noise ratios of -10dB,0dB,and
10dB are chosen with results given in Figs. 2-6 with B=3.3%3 U=16. Figs.?-11 with
B=17,7 =10.

The sinusoidal signal y(t) is known and plus the Gaussian noise, we have

the results shown in Figs., 12- Y.
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(B) 8ignal unknown:
the ocutput of the AR model.is
poles and zeros. In using AR parameter estimation methods that assume all-

pole model is difficultygtﬂ][103 It is well known that the least squares -

estimateof coefficient is biased in this case, and the bias is caused by

From thr pnrameter estimntor[B] which with the addition of noime in

Z(n)=y(n)+n(n)

Hence, the model for the ainuaoids in white noise problem contains

the expected value of M[qu}x 0 ( Wendv € ). Corresponding tn Lhe FPE we can
get ﬁ&(w) by substracting ﬁ?(w) with FPE,

U(n)

white noise

Boucher optimum windowy d&nd we can estimate the time delay.from a generlized

correlator,

statisties plus the Gaussian noise with zero mean and variance, the sipnal-to-
noise ratios of -=10d3,0dB,and 10dB are ghosen with results given in Fips.|§-/9

with B=3.53,1r=16. In Fips 20 Ywith B=17 ,T =

Gaussian noise, we have the results shown in Fips. 25-27 JWith T=16.

Wavelet

(a) AR model

y(n)

Blozk diagram (a) AR model

U(n)
—_——

wWwhite noisq

Waveled

(b) ARMA Model

-

White Gauseian ncise
(b) ARMA rodel

Then, use this power spectrum as the window parameter of Hassab &

Similar to the known sipnnl case when y(t) is random with uHknown

10

‘e

The sinusoidal signal y(t) is unknown and plus tae unknown white
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IV. Summary

The time delay estimation from cross-correlator without window exhibits
a thresholding effect as the eignal-to-noise ratio decreasea. In which we get the

false peak.{11)

After using the window and averaging the periosdgrams of the data segments
the thresholdinr effect ¢an be avoided then the maximim M is chose. The unknown
signal case before we compute the @v(w) the Akaike FPE criterion must be used to
decide the order of the prediction error filter coefficients.(Sec Table 1.)

The relation of SNR and M can be found in Fig.2J from the Fig. we found
M is increased when SNR is decrensed.

In the random signal case B=3.33% and B=17 are achosey Here we cun find
B=17 has the smnll power comparedto B=3.33% and the amall M(=7) is enouph to
detect the time-delav with SNR=~30d4B,

The key of time delay cstimation of unknown signal is the estimation of
Qy(w), ¢z1(w), and Qza(w). I we can estimate the power spectrum of y(t) fiom

the sensor: outputs, then we must have a pood estimate using the above method.
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Fig. 3a
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Fig. 3c
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Fig. 5a
Fig. 5b
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Fig. 6a
Fig. 6b
Fig. 6c
Fig. 7a
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Fig. 8a
Fig. &b
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Fig. Ub
Fig. 10a
Fig. 10b
Fig. 10c¢
Fig. 11a
Fig., 12a
Fig, 12b
Fig. 13
Fig. 12b
Fig. 1ba
Fig. 4o
Fig. 15a
Fig. 15b
Fi , 15¢
Fig. 16a
Fig, 16b
Fig. 16c
Fig. 17a
Fig. 17b
Fig. 17c
Fig. 18a
Fig. 180b
Fig. 1fc

Fipure Captions

Block diapram oV the grneralized cross-correlator.

Without window output for M=1, =16, GNR=10dB,the result of time-delay =16,
window function of W I(w), for M=1,4E16, SNR=10db,

With window of WI.(WS,M:ﬁ,SNR=1OdB, =16, the result of time-delay =16.
Without window ou%put for T=16, SNR=0dB, M=1, the result of time-delay =10.
Window function of W _.(w), for M=1,T=16, SNR=0dB,

With window of W I(ws, for M=1, T=16, SNR=0dB,the rrsult of time-delay =13.
The rame asa Fig.gc,but M=3, the result of time-delay =13,

The same as Fig. 3c, but M=?, the result of time-delny =16.

Without window outmut for =16,M=1,8Nk=-10dB, the result of time«delay =-6.
Window function of W _.(w), for M=1, T=16, SNR=-104B,

With window of W[ (v), M=1,8NR==10dB, T=16, the result of T=13%.

With. | window ou%nut for H=7, 5NR==10dB,the result of time-delay =12.

With window for M=15, SNR=-10dB, the result of time-delay =13. '

With window for M=20, SNR=-10dB, the result of time-delay =1k,

Without window B=17. =10, $NR=10dB,M=1, the result of time-delay =10.

With window B=17., T=10,5NR=10,M=1,the resul* of time delay =10,

Without window,for B=17, S5KR~0dH, =10,M=1,the result of time-delay =10.

HiWkth window for B=17., SNR=0OdB, T=10,M=1,the result of time delay =10,

Without window ,for B=17, SHK=-10dB, =10, the result of time-delay =13.

With window for B=17,; SNR=-10dR, =10, M=1, the result of time=delay =10,

Without window B=17, SNRr—POdb,M:1“t:10' the resuit of time-delay =13.

With window B=17, 8NR=-20d4B, M=1.T=10,the result of time-delay =13,

With window B=17, SKR=-20dB, M=5, T=10, the result of time delay =10.

Without window B=17, SNR=-30dB, M=7, ©=10, the result of time delay =22.

Without window sine wave foar M=1,SNR=5dB, T=16, the result of time delay =16.

With window sine wave for M=1, SNR=5dB, T=16, the result of time delay =16.

Without window sine wave for M=1, SNR=-5dB,T=16, the result of time delay =11..

With window of sine wave for N=1, SNR=-%dB,T=16, the result of time delay =17.

Without window of sine wave for M=1,SNR=-15dB, Y =16, the result of time delay
=-20, ,

With window of sine wave for M=20, SNR=-15¢B, V=16, the result of time delay
:‘12.

Without window output signal unknown for B:}.}B.M=1,T&16.SNR=10dB; the time-

delay =16.

Window function of W.I(w), for B=3.32,8NR=10db, T=16,

With window of WI.(wS; for B=3,33,5NR=10dB, *=%6, the time delay =16.

Without window oﬂ*putrwf B=3,33, S5NR=0dB, T=16,(unknown signal), the result

of time delay =1%, M=1,

Windew function of W I(w),for B=3.33%, SNRz0dB, T=1€, (unknown signal),'M=a1.

With window of W .(ws fer B=3%,33, 3NR=0dB, T=16, (unknown signal), the result

of time delay = 1% M=1.

Without window cutput with unknown signal, for B=3,3%3 ,SNR=0dB, T=16, the
result of time delay =15,M=35,
The same as 17.,a but M=5, the result of time delay =15.

The same as 17.,akb,but M=7, the result of time delay =1h.

Without window of unknown signal B:3.3%3,SNR=-10dB, T=16, M=1, the result of
time delay =-6,

Window function of W
with window of Wll(w

l(w) yB=3.%3, GNR==10dB, =16,M=1, unknown signal.
)1 5-3.33,50R=-10dB, =16,Me1, the result of time delay

211-
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Fip“.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig,
Fip.
Fig.
Fig,
Fig.
Fig,
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Note:

19a
194
20a

20b

27a

21b

22a

22b

°3a

23b

2ha
2itb

2he

26a

26b
27a

a7b
28

With window ,the same as 18-c, but M=?, the result of time delay¢¥=11.
The same as 19-a, but M=15, the reault of time delay T =1k,

Without window of unknown signal for Be17.,8NR=10dB, 7T=10, M=1, the result
of time delay7=10.

With window of unknown signal for B=17,5NR=10dB, T=10,M=1, the result of
time delay ¥=10.

Without window of unknown sipnal, for B=17, SNR=0dB,7=10, M=1, the result
of time delay 7=10.

With window of unknown signal, for B=17, SNR=OQdb,T=10,M=1, the result of
time delay T=10.

Without window of unknown signal, for B=17., SNR=-10dB, M=1, the result
of time delay T=13.

With window' of unknown signal, for B=17, SNR=-10dBf?=40., the result of
time dGlB_V 7:10, M:E.

Without window of unknown signal, for B=17, SNR:-POdB,'{=10,M=1, the result
of time delay =13,

With window of unknown signal, for B=17, SNR=-20dB, =10,M=1, the result of
time delay =10.

Without window of unknown signal for B=17, SNR=-30dB, T =10, M=1, the result
of time delayT==6,

Without window of unknown signal for B=17, SNR=-30dB, 7 =10, M=?7, the result
of time delay 7T=22. )
With window of nnknown signal for B=17, SNR=-30dB, 7=10, M=7, the result of

time delny =17,

Without window of sine wave of unknown signal, for=g=16,M=1, the resull of
time delay~T=16. SNR=5dB.

With window of sine wave of unknown signal, for7=16, M=1, the result of
time delay =16. SNR=5dB,

With window of unknown sipgnal M=1, the result of time delay{q =15.
(without window case is the same as Fig.12a.) (SNR=-5dB).

With window M=3, the result of time delayT=16. (SNR=-5dB)
With window for SNR=-15db,Z7=16,M=3, the result of time delay T=1k.

Without window for SNR==15dB,M=3,'T +16, the result of time delay T=12.
The relationship of random signal case(btexp(-Bt).(known signal)

Fig.0 is the random signnl cAbe withi 'B=3.33 and aignal is known.
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(A)

Reference A

Burg's Recursive Algorithm

Let X(t) denote a sample function of this process, which is sampled

uniformly at the rate 1/I to produce a time series consigting of N samples,as

shown by

{x(n%: {x(1),x<2>,.........,x(m} (A1)

where X(n) denotes Hhe nth sample of the series.

The autocorrelation function of the time series X(n) for a time

lag of mTB geconds and time index n is defined by
Re(nym)= F (X(n,m) X*(n) ) (AP)

where E[ Jdenotes the expectation, and the asterisk denotes the complex

conjugnte operation, With the random process X(t) nssumed wide-srnse stationary,

the autocorrelation function Rx(n,m) dependent only on the time lag mTq, as shown
by

Rx(n.m)=Rx(m) (A3)
Also, the autocorrelation function exhibits conjugate symmetry, i., Rx(m) is

a Hermitian function

Rx(-m)=R§(m) | . (AN) 1
Suppose that the time Beries{ X(n)k is applied to a linear digital filter of 1
impulse response {h(n)} ot order P, The filter produces an output time series
% y(n)‘ that is designed to approximate & desired time meries {d(n)& as shown
in Figure A1. and the resultant error time geries is

e(n)=d(n)-y(n) (AS)

X(n) —eeee ] by (n) £n) e(n)

. 'T* a

Fig, A1 d{n)
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For a special case of a filter desipned to predict the value of a
random process X(t), one time unit ahesd by using the present and past values

of the time series X(n), i.e.

d(n)=X(n+1)
A prediction-error filter is intrcduced. Fig. A2 shows the functional
relationship between the linear prediction filter, characterized by the impulse

response {h(n)} and the prediction filter, characterized by the impilse response

Lutwl.

X(n?

A A
Linear Predictive Filter A(n+1) Unit X{(n)

— E(n )
hH(n) Dolay T+

Prediction Error Filter

in) e — ¥

Fig A2 ¢ Tllustrating the relationship between
the predictive filter and prediction-error filter

The prediction~error filter equation expressed in matrix form is given

by [12)
RX(O) Rx(-1)............. Rx(‘l-Mﬂ 1 (PM
Rx(1) Rx(o) Ceeeveneraces HX(Z-M) W1

= (AG)

.
3
.
.
L]
]
.
.
.

Crevassne e

B (MR, (me2) e eennnnnes B,(0) /l Wy (M)




N

where -
M-

pM=Z W, (K) R, (=K)
K=0

is the prediction-error power

A recursive algorithm developed by Burgl;13] for solving the set of prediction-

error filter equation is availible,

Suppose that we know the solution to the set of p equations pertaining to

a prediction filter of order p, as shown by (A6). We can tnke the complex conjugate

of both sides of (A6) and recognize that

(1) The prediction-error power PM is A real quantity
(2) The autocorrelation matrix is Hermitian,i.e.
*(m)=K (-
R, * (m)=K, (-m)

We thus obtain

. N ( ~
) R oMo ,
RA(O) R(1) weeiain R (He1) 1 ( By |
D (. ; e .
Be(=1) R(0) weviaonn Ry (M-2) We_, (1) 0
RnA(“"»d)RX(A?-M)...ooo.' RX(O) / L wb"l—"(r"“-“/)J L O P
(A7) can be rearranged as
-~ Sy
. ) -
o -
( R, (0) R (=1) wevvians R(1-M) w}_q(mﬂ1) 0
4 j -
R (1) Ry (0) reveesees By(2-0) Wy 4 (8=2) 0
. L' el -
) . .
Rx(“-1) Hx(h"‘?>coaooa0-c RX(O) ) 1 ; J PM

(A6) pertains to a prediction-error filter of order p operated (P=:F4>

(A7)

(A8)

N



in the forward direction. Un the other hand, (nf) pertains to a prediction-
errvor filter of the snme order except that is operated in the backward

direction. This is illustreted in Fig. A3

{ x(1),x(2),.......X(N)B‘*”“""**{ 1.wr(1)............wr(rw —> O/F
-l Ml

(a)

{x(q).x(a),.......x(n)‘, PO W (H= ) ey T L 07
(b) -

Fig.A3: [1lustratine @ (a) forward and (h) backward
prediction error filtering

Combining (A6) and (A8) to expand the number of prediction error filter

equations by one is as follows!

. kel S
RX(O) RX(-,) ceeves Rx(l-h) RX(-M)\ 1 | 0
R],(1) R(0) ceves B (2-K) R (1-1) W, (1 W, (0
: iy
RK(M~1) Ry (=2 e oee R (0) R (=) 1) ] W, (heap W () )
RX(M) RX(M-1)...... RX(1) Rx(o) L}\ 0 1 |

g ~ . \
(PM [/ ¥
0] 0
= . + WM(M) . (AQ)
0 .
(!3” ,J )
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However, for the corresponding prediction-error filter of arder (m+1) we
have

. ~
Re(0)  Ry(=1) o e Ro(1=M) R (M) r 1 j PMMT
LI N N 2 ‘_—"' - w
Rx(‘l) Rx(o) RX(R pi) RX(‘l M M(1) o (A10)
(M- - - -1)
R (M 1) RX(M Pleceas RX(O) Rx( 1) WM(M 1) 0
Rx(l\l) ‘(X(M-’])-oooo Rx(1) RX(O) WM(M) -’] § O (/
/s “~
Compnring with (AY) and (A10), we deduce that
NM(}\)-.- WH_1(K) + wh(m) WM_,‘(M-K) i KsO, 1, coua,pl=h) (A1)
PM+ 1= Byt w“(rv.)AN (A12)
and
x - (A13)

l1n the recursive formula of (A11), note that for all values of M

1 for K=0
wM(h) =

0 for KM

(A13) will always hes a solution provided that P¥17(h thus using (A13) to
eliminqteA; from (A12),we get
|

Pyp= Byl 1= o, 00 ")

By analogy with the transmission of power throurh n terminated two-port

network, we may viecw WN(M)HS a " reflection coefficient'.
1
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COMPUTATIONAL PRUCHKDURLE

Summarizing the steps in the recursive procedure involved in
calculating the prediction-error filter coefficients and relnted values

of the spectral density and autocorrelation function, they are

(1) For thegiven time series X(n) , n=1,2,.....N and M=0,

Calculate the power

N
;
P1=-N—‘;§;X(n) X*(n)

and calculate the reflection coefficient and the prediction-error
power by

N-\

-
22 20 X (n) X(ns1)
n-

S T |?’]
= pq& NEREN

(?) Increament M by 1, aud calculate the next values:

{ s (M
PH(n)= PM_1\n) + WN(h) qM_1(n)

qM(n)=qM_1(n+1) + W (M) PM_1(n+1)

where

Po(n)z X(n)

go(n)= X(n+1)

(3) Calculate the refle o coefficient

N-M
'?Zpb‘ln(n) ay_4{n)
WM(M)= 'W?H'mﬂ"' ........................
__JUPM-‘l(n)‘ * “‘M 1("){ ]
7=\

S VO VU 2

o i o e




and the gorresponding value of the error prediction power

Praq™ Py 11"|WM(M)\Z ]

(4) Calculate the remaining coefficients of the prediction error filter

by

£

. - , INT ] - '. - -
wM(x) = wj_q(h) + WM(M) W M-q(M K) 3 h=1,2,0004b=1
(5) Repaat steps (2) to (4) for each value of M up to the optimum value

p{=M) for which the final prediction-error

(l4M+4)
PR e b
(FPE), = Flie
(N-M=1)

is a minimum.,

(6,) We now have all the quantities required for calcuation the extrupolated
value of the autocorrelation function,
M
Ry (H) = =i, (1) By = 2, Wy (K) Ry G-K)
and for calculating the spectrn&zsensity estimate

pM+1

1+ ﬁi: WM(K) exp(-27 kif_)
K=\
where Ts is the sampling period and X(t) is the band-limited to -B,B,

/N
bx(f) JEPEN

-
2B

When the process X(t) is sampled at the Nyquist rate, we have T=1/2B

The computation is thereby completed.

tf
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